Для новых пользователей первый месяц бесплатно.
Чат-бот для мастеров и специалистов, который упрощает ведение записей: — Сам записывает клиентов и напоминает им о визите; — Персонализирует скидки, чаевые, кешбек и предоплаты; — Увеличивает доходимость и помогает больше зарабатывать;
Темп роста и темп прироста: определение и формулы расчета
В разных областях общественной жизни, целом ряде наук и методов исследования используются формулы показателей темпа роста и темпа прироста. Наиболее часто они применяются в экономике и статистике для выявления тенденций и результатов проведенных мероприятий. В этой статье рассматриваются ситуации, когда нужны эти формулы, их определения и порядок вычисления.
Темп роста
Вычисление темпа роста начинается с определения ряда чисел, между которыми нужно найти процентное соотношение. Контрольное число обычно сравнивают или с предыдущим показателем, или с базовым, стоящим в начале числового ряда. Итог выражается в процентах.
Формула темпа роста выглядит следующим образом:
Темп роста = Текущий показатель/Базовый показатель*100%. Если итог получается больше 100% — отмечается рост. Соответственно, меньше 100 – снижение.
Примером можно использовать вариант роста и снижения заработной платы. Сотрудник получал зарплату помесячно: в январе – 30 000, в феврале – 35 000. Темп роста составил:
35 000 / 30 000 * 100 = 116,66. В феврале относительно января зарплата составила 116%.
Темп прироста
Формула темпа прироста позволяет вычислить процентное отражение, на сколько выросло или уменьшилось значение показателя за определенный период. В этом случае видна более конкретная цифра, позволяющая судить об эффективности работы в динамике. То есть вычисляя отношение заработной платы (или другой характеристики) по формуле темпа прироста, мы увидим, на сколько процентов изменилась данная сумма.
Существует два варианта расчета:
- Темп прироста = текущее значение / базовое значение * 100% — 100%:
35 000/30 000*100%-100%=16,66%;
- Темп прироста = (текущее значение — базовое значение) / базовое значение * 100%:
(35 000-30 000)/30 000*100%=16,66%.
Оба способа расчета являются идентичными. Отрицательный математический результат говорит об уменьшении показателя за рассматриваемый период. В нашем примере заработная плата работника в феврале стала на 16,66% выше, чем в январе.
Формулы роста и прироста: базисный, цепной и средний
Темп роста и прироста могут быть найдены несколькими способами в зависимости от целей вычислений. Выделяют формулы получения базисного, цепного и среднего темпа роста и прироста.
Базисный темп роста и прироста показывает отношение выбранного показателя ряда к показателю, принятому за основной (база вычисления). Обычно он находится в начале ряда. Формулы для вычисления следующие:
- Темп роста (Б) = Выбранный показатель/Базовый показатель*100%;
- Темп прироста (Б) = Выбранный показатель/Базовый показатель*100%-100.
Цепной темп роста и прироста показывает изменение показателя в динамике по цепочке. То есть отличие каждого последующего показателя по времени к предыдущему. Формулы выглядят так:
- Темп роста (Ц) = Выбранный показатель/Предшествующий показатель*100%;
- Темп прироста (Ц) = Выбранный показатель/Предшествующий показатель*100%-100.
Между цепным и базисным темпом роста существует взаимосвязь. Отношение итога деления текущего показателя на базисный к итогу деления предыдущего показателя на базисный равен цепному темпу роста.
Средний темп роста и прироста используется для определения усредненной величины изменения показателей за год или другой отчетный период. Для того чтобы определить данную величину, нужно определить среднюю геометрическую от всех показателей в периоде либо найти путем определения отношения конечной величины к начальной:
- Средний темп роста
- Средний темп прироста = средний темп роста – 100.
Нюансы вычислений
Представленные формулы очень похожи и могут вызывать затруднение и путаницу. Для этого поясним следующее:
- темп роста показывает, сколько процентов составляет одно число от другого;
- темп прироста показывает, на сколько процентов увеличилось или уменьшилось одно число относительно другого;
- темп роста не может быть отрицательным, темп прироста – может;
- темп прироста можно вычислить на базе темпа роста, обратного порядка не допускается.
В экономической практике чаще используется показатель прироста, поскольку он более наглядно отражает динамику изменений.